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1.  INTRODUCTION  

Surface type is defined as the predominant type of surface cover in a given area. It is 
synonymous to land cover, which is commonly used in the remote sensing literature. In this 
document, the two terms will be used interchangeably.  Surface type information is required 
as input to weather, climate, and hydrological models supporting various U.S. Government 
and academic customers (Hasager et al. 2003; Wilson and Henderson-Sellers 1985). Many 
biophysical variables important for these studies, including albedo, surface roughness, 
evapotranspiration, and respiration, are surface type dependent (Bright 2015; Hasager et 
al. 2003; Sellers et al. 1996; Townshend et al. 1994). These parameters control the transfer 
of energy, momentum, mass, and latent and sensible heat between the biosphere and the 
lower layers of the atmosphere (Chen and Dudhia 2001; Dickinson 1995; Sellers et al. 
1995; Xue et al. 2001). Therefore, accurate representation of surface types and conditions 
is a key requirement for advancing the study of important elements of the earth systems, 
including weather and climate (Mahmood et al. 2014; Salazar et al. 2015), biogeochemical 
cycles (Bright 2015), and hydrological processes (Wood 1991; Zhou et al. 2015). Further, 
reliable and up-to-date information on surface type change is needed for land management 
(Luyssaert et al. 2014), implementation of national and international policies related to bio-
diversity and climate change (Sexton et al. 2016; Venter et al. 2016), and many other 
applications (Mantyka-Pringle et al. 2016; Senapathi et al. 2015).  
 
Land cover classification has a significant heritage in the remote sensing literature (Hansen 
and Loveland 2012; Townshend 1992). For nearly half a century, land cover products have 
been derived using data acquired by Landsat, the Système Probatoire pour l’Observation 
de la Terre (SPOT), and other observing systems, often at local to regional scales (Franklin 
and Wulder 2002; Townshend et al. 1991). At the globe scale, use of Landsat class data to 
derive land cover classifications at sub-hectare spatial resolutions has not been possible 
until recent years (Chen et al. 2015; Gong et al. 2013). Land cover products for model 
studies of weather and climate systems as well as other regional to global scale 
applications have been derived mainly using global observing systems, including the 
Advanced Very High Resolution Radiometer (AVHRR) onboard the NOAA-n satellite series 
(Hansen et al. 2000; Loveland et al. 2000), the Moderate Resolution Imaging 
Spectroradiometer (MODIS) launched as a part of the National Aeronautics and Space 
Administration (NASA) Earth Observing System (EOS) (Friedl et al. 2010; Friedl et al. 
2002), and Satellite Pour l'Observation de la Terre Vegetation (SPOT Vegetation) 
(Bartholome and Belward 2005).  
 
New and enhanced global observations has been and will continue to be collected from the 
Visible/Infrared Imager/Radiometer Suite (VIIRS). Surface type is one of the environmental 
data records listed in the JPSS Level 1 Requirement Document (L1RD). This Algorithm 
Theoretical Basis Document (ATBD) describes the algorithms and production of the JPSS 
VIIRS Surface Type products. 
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1.1.  Product Overview 

1.1.1.  Product Description 

The original VIIRS Surface Type product was designed to be an Environmental Data 
Record (EDR). It is created for each VIIRS swath by redelivering (i.e., remapping) a gridded 
Quarterly Surface Type (QST) Intermediate Product (IP) for that swath. If fire and/or snow 
are detected (by the Active Fire and Snow EDR algorithms, respectively) at some or all 
pixel locations within that swath, those pixels are flagged in the Surface Type EDR QA data 
layer. The Surface Type EDR has been generated in the Interface Data Processing 
Segment (IDPS) implemented by Raytheon Company. The IDPS Surface Type EDR ATBD 
can be found at https://www.star.nesdis.noaa.gov/jpss/documents/ATBD/D0001-M01-S01-
024_JPSS_ATBD_VIIRS-Surface-Type_A.pdf.  
 
The QST IP is generated based on heritage algorithms used to produce global land cover 
products using MODIS and AVHRR data. It uses VIIRS observations acquired over a 12-
month period, but is produced on a rolling quarterly basis. It is expected that these quarterly 
IPs could be used to capture some intra- and inter-annual surface type changes over large 
areas. Soon after the launch of the S-NPP, however, it was determined that it was 
unrealistic to expect that intra-annual surface type changes could be quantified using QST 
IPs produced within the same year, because the errors in these products likely would result 
in large quantities of spurious changes that would far exceed the amount of real changes 
(Friedl et al. 2010; Stow et al. 1980). Based on this observation, the QST IP is replaced 
with a static global gridded surface type map generated annually. The static product is then 
renamed the Annual Surface Type (AST) product and generated offline by the NESDIS 
STAR VIIRS Science Team. 
 
The VIIRS Surface Type EDR provided in VIIRS swath space was primarily used by the 
VIIRS Land Surface Temperature (LST) EDR as an essential input. Changes were made to 
the LST EDR algorithm implemented in the S-NPP Data Exploration (NDE) system at 
NESDIS Environmental Satellite Processing Center (ESPC). The new algorithm does not 
require the Surface Type EDR, but a static surface type map is still needed. Consequently, 
the current JPSS L1RD for surface type only includes the Annual Surface Type (AST) 
product. The VIIRS AST product remains to be generated offline from NDE system, but the 
task to generate the Surface Type EDR to provide near real time surface type change data 
has been dropped. Figure 1-1 shows the relationships between the IDPS Surface Type 
EDR and the current STAR-JPSS Offline Annual Surface Type (AST) product. 
 

https://www.star.nesdis.noaa.gov/jpss/documents/ATBD/D0001-M01-S01-024_JPSS_ATBD_VIIRS-Surface-Type_A.pdf
https://www.star.nesdis.noaa.gov/jpss/documents/ATBD/D0001-M01-S01-024_JPSS_ATBD_VIIRS-Surface-Type_A.pdf
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Figure 1-1.  Relationship between the original IDPS Surface Type EDR and the Annual 
Surface Type (AST) product generated offline from the NDE system. AST was an 

Intermediate Product (IP) in the IDPS Surface Type EDR 
 

1.1.2.  Product Requirements 

The Level 1 requirements for the VIIRS Surface Type product as described in the L1RD 
document were designed based on the original Surface Type EDR concept. Despite the 
above described changes to the surface type EDR and QST IP, these requirements remain 
applicable to the current implementation of the AST product (Table 1-1).  
 

Table 1-1.  Level requirements for the VIIRS Surface Type product 
 

Subject Threshold Value 

a.  Horizontal Cell Size [HCS, VIIRS 
Guarantee] 

1 km 

b.  Horizontal Reporting Interval [VIIRS 
Guarantee] 

HCS 

c.  Horizontal Coverage [VIIRS 
Guarantee] 

Land 

d.  Measurement Range 17 IGBP Types Specified in 
Table 1-2 

e.  Correct Typing Probability (Vegetation 
/Surface Type) [VIIRS Guarantee] 

> 70% for the 17 types. 

 
Many classification schemes have been developed for representing the wide range of 
surface types across the globe. The VIIRS AST product uses the 17-class scheme 
developed by the International Geosphere Biosphere Program (IGBP). The definitions of 
those classes are provided in Table 1-2. 



NOAA  
  Satellite Products and Services Review Board 

Algorithm Theoretical Basis Document for VIIR Surface Type 
  Page 11 of 50 

 

 

 

 
Table 1-2.  IGBP surface type definitions (Belward and Loveland 1996). 

 
IGBP Surface Type Number 

and Name 
Definition 

1) Evergreen Needleleaf 
Forests 

Lands dominated by woody vegetation with a percent cover >60% and height exceeding 2 meters. 
Almost all trees remain green all year. Canopy is never without green foliage. 

2) Evergreen Broadleaf Forests Lands dominated by woody vegetation with a percent cover >60% and height exceeding 2 meters. 
Almost all trees and shrubs remain green year round. Canopy is never without green foliage. 

3) Deciduous Needleleaf 
Forests 

Lands dominated by woody vegetation with a percent cover >60% and height exceeding 2 meters. 
Consists of seasonal needleleaf tree communities with an annual cycle of leaf-on and leaf-off periods. 

4) Deciduous Broadleaf Forests Lands dominated by woody vegetation with a percent cover >60% and height exceeding 2 meters. 
Consists of broadleaf tree communities with an annual cycle of leaf-on and leaf-off periods. 

5) Mixed Forests Lands dominated by trees with a percent cover >60% and height exceeding 2 meters. Consists of tree 
communities with interspersed mixtures or mosaics of the other four forest types. None of the forest types 
exceeds 60% of landscape. 

6) Closed Shrublands Lands with woody vegetation less than 2 meters tall and with shrub canopy cover >60%. The shrub 
foliage can be either evergreen or deciduous. 

7) Open Shrublands Lands with woody vegetation less than 2 meters tall and with shrub canopy cover between 10-60%. The 
shrub foliage can be either evergreen or deciduous. 

8) Woody Savannas Lands with herbaceous and other understory systems, and with forest canopy cover between 30-60%. 
The forest cover height exceeds 2 meters. 

9) Savannas Lands with herbaceous and other understory systems, and with forest canopy cover between 10-30%. 
The forest cover height exceeds 2 meters. 

10) Grasslands Lands with herbaceous types of cover. Tree and shrub cover is less than 10%. 

11) Permanent Wetlands Lands with a permanent mixture of water and herbaceous or woody vegetation. The vegetation can be 
present in either salt, brackish, or fresh water. 

12) Croplands Lands covered with temporary crops followed by harvest and a bare soil period (e.g., single and multiple 
cropping systems). Note that perennial woody crops will be classified as the appropriate forest or shrub 
land cover type. 

13) Urban and Built-Up Lands Lands covered by buildings and other man-made structures. 

14) Cropland/Natural Vegetation 
Mosaics 

Lands with a mosaic of croplands, forests, shrubland, and grasslands in which no one component 
comprises more than 60% of the landscape. 

15) Snow and Ice Lands under snow/ice cover throughout the year. 

16) Barren Lands with exposed soil, sand, rocks, or snow and never has more than 10% vegetated cover during any 
time of the year. 

17) Water Bodies Oceans, seas, lakes, reservoirs, and rivers. Can be either fresh or salt-water bodies. 
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1.2.  Satellite Instrument Description 

The VIIRS instrument has 22 spectral bands within the visible-infrared-thermal spectral 
range, including 16 moderate (M) bands having a nadir resolution of 750-m, one day-and-
night band (DNB) with a near constant 750-m resolution across the full scan, and 5 imagery 
(I) bands having a 375-m nadir resolution. A comparison of these bands with those of other 
instruments, including MODIS, AVHRR, and Landsat Thematic Mapper (TM) is shown in 
Table 1-3. 

Table 1-3. Inter-comparison of the Spectral Bands of VIIRS, MODIS, AVHRR, and TM 
 

VIIRS MODIS Equivalent AVHRR Equivalent TM Equivalent 
  (AVHRR-3) (Landsat 4 & 5) 

VIIRS 
Band 

Spectral 
Range (um) 

Nadir 
HSR (m) 

Band Range HSR Band Range HSR Band Range HSR 

M1 0.400-0.421 750 8 0.405-0.420 1000       

M2 0.436-0.451 750 9 0.438-0.448 1000       

M3 0.477-0.496 750 10 0.483-0.493 1000    1 0.450-0.520 30 

M4 0.541-0.561 750 4 0.545-0.565 500    2 0.520-0.600 30 

I1 0.597-0.679 375 1 0.620-0.670 250 1 0.572-0.703 1100 3 0.630-0.690 30 

M5 0.662-0.680 750 1 0.620-0.670 250 1 0.572-0.703 1100 3 0.630-0.690 30 

DNB 0.5 - 0.9 750          

M6 0.733-0.752 750 15 0.743-0.753 1000       

M7/I2 0.843-0.881 750/375 2 0.841-0.876 250 2 0.720-1.000 1100 4 0.760-0.900 30 

M8 1.225-1.252 750 5 SAME 500       

M9 1.368-1.383 750 26 1.360-1.390 1000       

M10/I3 1.571-1.631 750/375 6 1.628-1.652 500 3a SAME 1100 5 1.550-1.750 30 

M11 2.234-2.280 750 7 2.105-2.155 500    7 2.080-2.350 30 

I4 3.550-3.937 375 20 3.660-3.840 1000 3b SAME 1100    

M12 3.598-3.791 750 20 SAME 1000 3b 3.550-3.930 1100    

M13 3.987-4.145 750 21-23 3.929-4.080 1000       

M14 8.407-8.748 750 29 SAME 1000       

M15 10.23-11.25 750 31 10.78-11.28 1000 4 10.3-11.3 1100 6 10.40-12.50 120 

I5 10.56-12.43 375 32 11.77-12.27 1000 5 11.5-12.5 1100 7 10.40-12.50 120 

M16 11.41-12.32 750 32 11.77-12.27 1000 5 11.5-12.5 1100 8 10.40-12.50 120 

 

The M bands are used to produce the 1 km VIIRS AST product as specified in Table 1-1. 
Unlike MODIS, whose pixel size at the end of a scan line can be up to 5 times larger than 
at nadir in the scan direction, VIIRS uses a two-stage aggregation scheme to constrain 
pixel size increases along the scan line to within 2 times of a nadir pixel (Figure 1-2). It has 
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been demonstrated that with this aggregation scheme, the effective spatial resolution of 
gridded VIIRS data is close to the 1 km spatial resolution of the AST product specified in 
Table 1-1 (Campagnolo et al. 2016).   

 

 
 

Figure 1-2.  VIIRS uses a 2-stage aggregation scheme to constrain the pixel size at the end 
of a scan line within about 2 times of a nadir pixel in the scan direction. Without such an 

aggregation scheme, a MODIS pixel at the end of a scan line is about 5 times the size of a 
nadir pixel in the scan direction (from (Schueler et al. 2013)). 

 
VIIRS has been successfully deployed onboard two satellites – the S-NPP launched in 
2011 and the first Joint Polar Satellite System (JPSS-1, which was renamed NOAA-20 
soon after launch) in 2017. The two satellites follow the same orbit but are separated by 
about 50-minutes. As a result, in any given day the two satellites don’t have the same local 
overpass time over the same ground location, and their viewing geometry over that location 
are quite different (Figure 1-3). VIIRS will be flown in future JPSS missions designed to 
provide continuous observations until the mid-2030s1.  

                                                 
1 Updates on future JPSS missions are available at https://www.jpss.noaa.gov/mission_and_instruments.html.  

https://www.jpss.noaa.gov/mission_and_instruments.html
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Figure 1-3.  SNPP and JPSS1 follow the same orbit with a ~50-minute temporal interval. In 
any given day they have different local overpass time and viewing geometry over the same 

ground location.  
 

 
2. ALGORITHM DESCRIPTION 

The VIIRS Annual Surface Type (AST) algorithm is based on approaches developed for 
generating global land cover products from MODIS and AVHRR (Friedl et al. 2010; Friedl et 
al. 2002; Hansen et al. 2000; Loveland et al. 2000). These approaches require gridded 
global composites of satellite images as inputs, which are used to produce metrics 
designed to provide more consistent representation of the spectral-temporal signatures of 
different surface types across the globe than the original observations or composites. The 
derived metrics are then classified to produce global land cover maps using classification 
models derived using machine learning algorithms and globally representative training 
samples.  
 
For MODIS, gridded composites are generated by the MODIS Adaptive Processing System 
(MODAPS) and are provided as a standard product for use by downstream applications, 
including the generation of global land cover products. For VIIRS, gridded composites are 
not available as a stand product. Generating these composites is part of the VIIRS AST 
processing flow. 
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2.1.  Processing Outline 

The VIIRS AST processing flow includes two major steps: VIIRS data preprocessing and 
surface type classification/validation (Figure 2-1). During preprocessing, swath level 
observations are mapped into the global Sinusoidal grid space. The Sinusoidal projection is 
the standard projection for most MODIS products (Wolfe et al. 1998), and is the designated 
projection for the VIIRS AST product. The gridded VIIRS data are then used to create a 
global mosaic for each day.  
 
These daily composites are further composited to create monthly composites to minimize 
contaminations by clouds, shadows, or other bad observations. Finally, the monthly 
composites are used to create a suite of annual metrics.  
 

 

 
 

Figure 2-1.  Processing flow of the VIIRS AST algorithm. 
 

The annual metrics constitute the inputs to the second step – surface type mapping. Two 
advanced machine learning algorithms – decision trees (DT) and support vector machines 
(SVM), have been used to produce the AST products. A globally representative training 
dataset is used to train these algorithms. The final AST products are produced by applying 
a sequence of post-processing procedures to the initial AST products generated by the 
machine learning algorithms to remove some known errors in those initial products. 
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Figure 2-2. Left: Global daily mosaics created using NOAA-20 (top) and S-NPP (middle) 
alone for January 1, 2020 have data gaps.  Those gaps are filled when both satellites are 

used to create a combined daily mosaic (bottom).  Right: A zoom-in view over South 
America where small clouds moved/changed a lot during the 50 minutes between the 

overpasses of the two satellites.  The daily mosaic created using both satellites (bottom) 
have substantially less clouds/shadow than those created using either satellite alone (top 

and middle). 
 
It should be noted that the daily data gridding/mosaicking algorithm suite is designed for 
processing VIIRS data acquired by one or more satellites (Figure 2-1). During any time 
period when a single VIIRS instrument can acquire observations (e.g., prior to the launch of 
NOAA-20, or when both S-NPP and NOAA-20 are in orbit but one of them goes wrong), 
data from that instrument will be used to create daily mosaics for that time period. When 
two or more VIIRS instruments are in orbit, for any given day one daily mosaic will be 
created using data acquired by each VIIRS instrument, but the final global mosaic for that 
day will be created by combining the daily mosaics from all VIIRS instruments. Because 
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clouds/shadow, data gaps and other data quality problems (if any) in a daily mosaic created 
from one instrument may not be present in a mosaic created from another instrument, or if 
they are, the likelihood they are located at the same locations as in the first mosaic is low, 
the combined mosaic in general should have less data gaps and cloud/shadow 
contamination than those created using data acquired by each instrument alone (Figure 2-
2). With this daily gridding/mosaicking approach, the overall processing flow shown in 
Figure 2-1 can be used to generate AST products when an old VIIRS instrument is retired 
and/or a new one is added. For example, at the end of the S-NPP mission, we will simply 
remove S-NPP data from the processing flow. Similarly, when JPSS-2 is launched, the SR 
EDR can be directly plugged into the future JPSS mission box in Figure 2-1.  
 

2.2.  Algorithm Input  

Major inputs to the AST algorithm include VIIRS M1 – M5, M7, M8, and M10 – M16. All 
VIIRS observations acquired during daylight time in a year in these bands are used in 
producing the AST for that year. Other inputs include training data, ancillary data, and 
validation data. 
 

 
Figure 2-3. An in-house tool has been developed to facilitate labeling training and validation 

samples based on available high resolution Google Earth (GE) images. The tool divides 
each 1-km grid into 36 equal-sized sub-grids and marks the center of each sub-grid on top 

of the GE image. An analyst determines the surface type for the 1-km grid based on the 
types observed over the 36 sub-grids. The two example sites show how the 1-km grid cells 

in the Sinusoidal projection are distorted differently in different regions. 
 
Training data are required to train the machine learning algorithms used in the AST 
production. The initial AST training dataset consisted of samples included in the System for 
Terrestrial Ecosystem Parameterization (STEP) database (Muchoney et al. 1999). In order 
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to be trained adequately, the machine learning algorithms require large quantities of 
training samples to represent the global distribution and spectral-temporal signatures of 
different surface types. Additional training samples have been selected from areas where 
existing global land cover products have high levels of agreements, which serve as 
indicators that those areas likely have been classified correctly by those products (Song et 
al. 2014a; Song et al. 2017). An in-house tool has been developed to verify those samples 
using high resolution images available from Google Earth. The tool plots the 1-km footprint 
of a sample on Google Earth. An analyst then examines the available Google Earth image 
to determine the surface type for that sample (Figure 2-3). 
 
The number of samples in the current AST training dataset is listed in Table 2-1. Their 
spatial distribution is shown in Figure 2-4. It is expected that additional training samples will 
be added and/or corrections of existing samples be made in the future using the in-house 
tool shown in Figure 2-3. 
 
Table 2-1. Number of training samples available for generating the VIIRS AST product. No 

training samples are selected for the urban and built-up lands (13) and water bodies 
classes (17) because they are mapped based on ancillary datasets. 

 

IGBP class 
number 

IGBP class name Number of pixels in 
training 

1 Evergreen needleleaf forests 1223 
2 Evergreen broadleaf forests 5881 
3 Deciduous needleleaf forests 558 
4 Deciduous broadleaf forest 991 
5 Mixed forests 1972 
6 Closed shrublands 389 
7 Open shrublands 6239 
8 Woody savannas 2933 
9 Savannas 3330 
10 Grasslands  5554 
11 Permanent wetlands 1439 
12 Croplands 8184 
13 Urban and built-up lands 0 
14 Cropland/natural vegetation mosaics 1304 
15 Snow and ice 859 
16 Barren  4233 
17 Water bodies 0 
Total  45089 

 
Ancillary datasets are mainly used during the post-processing stage. A list of these 
datasets is provided in Table 2-2. Their specific uses are detailed in section 2.3.2.4. 
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Figure 2-4. Spatial distribution of the training sites that have been collected for generating 
the VIIRS AST product. 

 
Table 2-2 Ancillary datasets used in producing the VIIRS AST product. 

 

Ancillary data source Citations 

Urban mask Schneider et al. (2009) 
Land/water mask Carroll et al. (2009) 
Ecoregion map Olson et al. (2001) 
Crop probability map Pittman et al. (2010) 
Google Map/Earth data Google.com 
Local Landsat data  

 
Validation of the AST product requires reference samples selected following a probability 
based sampling design method (Olofsson et al. 2014; Stehman and Czaplewski 1998). The 
AST validation samples are selected through a stratified random sampling process. The 
percentage allocation of the validation samples for each surface type is calculated 
according to Figure 1 of Olofsson et al. (2012) (Table 2-3). A total of 6000 validation 
samples have been selected following this strategy and labeled based on Google Earth 
images and other available high resolution data sources using the in-house tool shown in 
Figure 2-3. The spatial distribution of these samples is shown in Figure 2-5.  
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Table 2-3. Reference samples that have been collected for validating the VIIRS AST 
product. The samples for the water bodies class are selected from inland water bodies. 

 

Class 
number 

Class name Number of 
validation 
samples 

Percentage in 
the validation 
dataset (%) 

1 Evergreen needleleaf forests 240 4 
2 Evergreen broadleaf forests 600 10 
3 Deciduous needleleaf forests 120 2 
4 Deciduous broadleaf forest 180 3 
5 Mixed forests 360 6 
6 Closed shrublands 60 1 
7 Open shrublands 660 11 
8 Woody savannas 660 11 
9 Savannas 300 5 
10 Grasslands  720 12 
11 Permanent wetlands 60 1 
12 Croplands 960 16 
13 Urban and built-up lands 120 2 
14 Cropland/natural vegetation mosaics 540 9 
15 Snow and ice 60 1 
16 Barren  300 5 
17 Water bodies 60 1 
Total  6000 100 

2.3.  Theoretical Description 

2.3.1.  Physical Description 

Satellite data have been used to map land cover for nearly half a century. The fact that 
many surface types have different spectral signatures (Figure 2-6) provide a strong 
physical basis for such practices. For global observing systems like VIIRS, MODIS, and 
AVHRR, although such spectral differences may not be as distinctive as they should be 
because most pixels at the quasi-km spatial resolutions of these instruments are highly 
mixed, their daily observing capabilities make it possible to capture the full annual 
phenological dynamics across the globe. Following an early study by DeFries and 
Townshend (1994) demonstrating the value of phenological information for global land 
cover mapping, such information has become a key component in developing global land 
cover products from MODIS, AVHRR, and other quasi-km resolution global observing 
systems (Bartholome and Belward 2005; Friedl et al. 2010; Friedl et al. 2002; Hansen et al. 
2000; Loveland et al. 2000). 
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Figure 2-5. Spatial distribution of the reference samples that have been collected for 
validating the VIIRS AST product.  

. 

 

 
 

Figure 2-6.  Laboratory measured spectra for selected surface cover types (Based on 
spectral data from https://speclab.cr.usgs.gov/spectral.lib06/ds231/index.html).  

 
Due to frequent cloud and shadow presence in many regions, many observations acquired 
in any given date are obscured or contaminated by clouds/shadow (e.g., see Figure 2-7 in 
section 2.3.2.1). Use of such observations in surface type mapping most likely will produce 

https://speclab.cr.usgs.gov/spectral.lib06/ds231/index.html
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erroneous results, as such observations provide little or no information over the concerned 
surface area. Compositing is a common practice for creating cloud free or near cloud free 
datasets. The physical basis of such compositing algorithms is that the spectral-temporal 
signatures of cloud and shadow are often different from those of clear view surface areas 
(Holben 1986).  
 
Once cloud free global datasets have been created, machine learning algorithms are often 
used to classify these datasets to produce surface type products. Although other methods 
have been used to produce global land cover products (e.g. Loveland et al. 2000), given 
adequately representative training datasets, a machine learning approach is more 
objective, repeatable, and often produces more accurate results (Huang et al. 2003). In 
fact, most existing global land cover products are produced using machine learning 
algorithms (Friedl et al. 2010; Friedl et al. 2002; Hansen et al. 2000; Zhang et al. 2016; 
Zhang et al. 2017). 
 

2.3.2.  Mathematical Description 

This section provides a detailed description of the algorithms and procedures needed for 
producing the VIIRS AST product (Figure 2-1). 
 
2.3.2.1 Gridding and Compositing 

Global land cover mapping algorithms require gridded satellite data, but for VIIRS such 
data are not available from existing operational processing systems. Therefore, the AST 
team developed an in-house algorithm based on the MODIS heritage gridding algorithm for 
mapping swath level VIIRS data into the Sinusoidal grid space. All VIIRS swath data 
acquired during the daylight time of each day are gridded and used to create a global 
mosaic for that day. As shown in Figure 2-7, these daily mosaics typically have substantial 
clouds in many areas across the globe.  
 
Compositing is a commonly used procedure for reducing clouds in global datasets. Given 
the fact that clouds are often brighter and hence have lower NDVI values than many clear 
view surfaces, compositing methods that use a single criterion (e.g., max NDVI, minimum 
blue) are common (e.g. Chuvieco et al. 2005a; Holben 1986). A major limitation of such 
single criterion methods is that they are optimized for certain surface cover conditions but 
not for others. For example, cloud presence over barren or vegetated surfaces typically 
results in lower NDVI values. For such surfaces, a clear view observation can be selected 
using a MaxNDVI method that chooses the observation having the highest NDVI value 
(Holben 1986). However, this method does not work for water and snow/ice, because water 
has lower NDVI values than clouds, and snow/ice may also have lower NDVI values than 
clouds. But both water and snow/ice have much lower values in the M10 band (1.61 µm) 
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than clouds. A minimum M10 method would be more effective for selecting clear view 
observations for surfaces covered by water or snow/ice. This compositing method is 
referred to as MinSWIR2, because the 1.61 µm band is often referred to as the second 
shortwave infrared (SWIR2) band in land applications.  
 
 

 
 

Figure 2-7.  A global mosaic of VIIRS observations acquired on July 15, 2018 in the 
Sinusoidal projection. Many areas of the globe have cloud cover in such daily mosaics.  

 
Use of multiple criteria can address some of the limitations of the single criterion methods, 
but existing multi-criteria methods typically require proper masking of clouds (e.g. Chuvieco 
et al. 2005b; Frantz et al. 2017; Griffiths et al. 2013; Luo et al. 2008; Roy et al. 2010). 
Unfortunately, VIIRS did not have a reliable cloud mask product for use by the AST 
algorithm during early stages of the S-NPP mission. To address this issue, the AST team 
developed a self-adaptive compositing (SA-Comp) algorithm that does not require a cloud 
mask product (Bian et al. 2018). In this approach, different compositing criteria are used to 
select clear view observations for different surface cover condition (SCC). As discussed 
earlier, the MaxNDVI method works well for both barren and vegetated surfaces, but when 
the surface is covered by water or snow/ice, the MinSWIR2 method is needed (Figure 2-8). 
 
SA-Comp uses the following rules to determine whether the surface is barren or is covered 
by vegetation, water, or snow/ice (Figure 2-8): 
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Figure 2-8.  A flowchart of the decision rules and compositing criteria used in the SA-Comp 

method. CP is the cumulative percentage of observations in a year that meet the 
conditional statement in the parentheses, whereas CF is the cumulative frequency within a 

specific compositing period.  
 
Rule 1:  If more than 95% of a pixel’s daily observations in a year had NDVI values below 

0.2, the pixel was not vegetated throughout the year and will be evaluated using 
Rule 2. Otherwise it had vegetation cover during at least part of the year and will 
be evaluated using Rule 4.  

Rule 2:  For a pixel that had no vegetation cover during the entire year, it was covered by 
snow/ice or water throughout the year if its NDWI values were negative for less 
than 5% of the time. The MinSWIR2 criterion is used for all compositing periods of 
the year. Otherwise barren was observed during at least part of the year, and 
whether barren was observed during a specific compositing period needs to be 
determined using Rule 3.  

Rule 3:  Since the pixel was not vegetated throughout the year and hence not vegetated 
during a specific compositing period, and barren was observed during at least part 
of a year, barren was observed during a compositing period if at least one daily 
observation in this period had a negative NDWI value, and the MaxNDVI criterion 
is used for this compositing period. Otherwise barren was not observed, meaning 
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the pixel had snow/ice or water cover during the entire compositing period, and 
hence the MinSWIR2 criterion is used. 

Rule 4:  Since the pixel had vegetation cover during at least part of the year according to 
Rule 1, it had vegetation cover in a specific period if at least one daily observation 
in this period had an NDVI value > 0.2, and the MaxNDVI criterion is used. 
Otherwise it did not have vegetation cover during this period, and Rule 3 is used to 
determine whether barren was observed during this period. 

 
The SA-Comp method significantly improves upon existing single-criterion methods with 
regard to the discrimination of clouds and cloud shadows (Figure 2-9). It also produces 
data that are better than standard MODIS composites as well as an early version of VIIRS 
composites produced using a MODIS heritage compositing method (Figure 2-10). 
 

 
 

Figure 2-9. A comparison of VIIRS 16-day composites generated by three single-criterion 
methods and the SA-Comp method showing that while each single-criterion method may 

work well for certain surface cover conditions but not for others, the SA-Comp method 
works well for all conditions.  
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Figure 2-10. Advantages of the SA-Comp method illustrated through a comparison of VIIRS 
8-day composites generated using this method with the MODIS MYD09A1 (8-day) and an 

early version of NASA VNP09A1 8-day surface reflectance products produced using a 
MODIS heritage compositing method.  

 

2.3.2.2 Metrics Generation 

One of the challenges to surface type discrimination at the global scale is that the spectral-
temporal signature of each surface type can vary greatly depending on geographic location. 
It has been demonstrated that temporal metrics such as annual maximum, minimum and 
mean values can greatly reduce the geographic variability of the spectral-temporal 
signature of surface types (DeFries et al. 1999; Hansen et al. 2000; Hansen et al. 2003). 
Such metrics are typically derived from observations acquired over one full calendar year 
(Friedl et al. 2010; Friedl et al. 2002; Loveland et al. 2000).  
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Following methods that have been successfully used to develop global land cover and 
continuous fields products from MODIS and AVHRR (DeFries et al. 1999; Hansen et al. 
2000; Hansen et al. 2003; Hansen et al. 2002; Hansen et al. 2005), the following temporal 
metrics are used in developing the VIIRS AST product (Table 2-4): 
 

- The maximum, minimum, mean and amplitude values calculated using the monthly 

composites of the 8 greenest months of the past 12 months. Here use of the 8 

greenest months instead of all 12 months of a calendar year effectively reduces the 

complications caused by seasonal snow covers and yet retains the seasonal 

variability associated with vegetation phenology. The 8 greenest months are not 

necessarily consecutive, but represent the 8 months with the clearest view of green 

vegetation.  

- Observations acquired in the greenest month selected by choosing the highest 

monthly NDVI value  

- Observations acquired in the warmest month selected by choosing highest monthly 

M14 brightness temperature.  

- Mean value of the warmest 4 months, where the warmest 4 months have the highest 

monthly M14 brightness temperature. This set of metrics were found to be 

associated with the dry season or senescent phase of tropical vegetation. It provides 

information useful for some areas but is not included in the 8 greenest months 

without introducing snow values at elevations or over high latitude regions (Hansen 

et al. 2000). 

 
Table 2-4 Annual metrics used in the VIIRS AST algorithm, where x refers to VIIRS bands 

M1, M2, M3, M4, M5, M7, M8, M10, M11, and M14. 
 

Maximum NDVI value 
Minimum NDVI value of 8 greenest months 
Mean NDVI value of 8 greenest months 
Amplitude of NDVI over 8 greenest months 
Mean NDVI value of 4 warmest months 
NDVI value of warmest month 
Maximum band x value of 8 greenest months. 
Minimum band x value of 8 greenest months. 
Mean band x value of 8 greenest months. 
Amplitude of band x value over 8 greenest months. 
Band x value from month of maximum NDVI. 
Mean band x value of 4 warmest months. 
Band x value of warmest month. 
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 2.3.2.3 Machine Learning Algorithms 

The annual metrics generated in section 2.3.2.2 are classified using advanced machine 
learning algorithms. A modified C4.5 decision tree algorithm was used to produce global 
land cover maps from MODIS (Friedl et al. 2010; Friedl et al. 2002). For VIIRS, a newer 
version of C4.5, C5, was used to produce the AST for 2012 following the pre-launch ATBD 
for Surface Type EDR. However, studies conducted over the last decade or so have 
reached a consensus that the support vector machines (SVM) typically produces more 
accurate classifications that are also spatially more coherent (e.g., less “salt and peppers”). 
Therefore, SVM has been selected for generating VIIRS AST for 2014 and later years. A 
brief description of both the C5 and SVM is provided below. 

 

Decision Tree – C5 

C5 is one of the most widely used commercial decision tree algorithms for land cover 
classification and many other applications. While the algorithm details of this software are 
unknown due to its proprietary nature 2, some details on its predecessor – C4.5, have been 
published (Quinlan 1993). The following summary of the C4.5 algorithm is based on 
Quinlan (1993), and is provided to illustrate the general algorithm concept of the C5 
software.  
 
The C4.5 decision tree algorithm employs a gain ratio method to partition training samples 
into subsets, i.e., during the recursive partitioning process, each partitioning X is made to 
maximize a Gain_Ratio measure: 
 

)(_/)()(_ XInfoSplitXGainXRatioGain 
 

 
Where gain(X) is a measure of the information gained by partitioning a set T of |𝑇| cases 

into n subsets ( nTT ,,1 
): 

 

)()()( TInfoTInfoXGain X
 

 
Suppose there are k classes in set T, and the number of cases of the jth class in T is Cj, 
then 
 

                                                 
2 See https://www.rulequest.com/see5-info.html for general information about the C5 software package. 

https://www.rulequest.com/see5-info.html
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Using the Gain_Ratio instead of the Gain as the splitting criterion avoids near trivial splits 
that produce high accuracy on training data but generalize poorly over unseen samples 
(Quinlan 1993). 
 
One of the advanced features of the C5 program is boosting. Boosting is an ensemble 
technique designed to improve the accuracies of weak classifiers, the effectiveness of 
which has been demonstrated in many studies (Bauer and Kohavi 1998; Chan et al. 2001; 
Chan and Paelinckx 2008; Friedl et al. 1999). It can also reduce the “salt and pepper” 
phenomenon common to remote sensing derived land cover products (Homer et al. 2004; 
Huang et al. 2003). When the boosting feature is used, the C5 algorithm builds a sequence 
of trees, where each tree is constructed to correct errors of the previous tree. Each pixel is 
classified by all trees constructed through the boosting process, and the final class label of 
that pixel is a weighted voting of the classification results derived by all trees over that pixel. 
Bauer and Kohavi (1998) provided a detailed mathematical description of the boosting 
algorithm.  
 

Support Vector Machines (SVM) 

The mathematical formulation of the SVM has been detailed in many publications (e.g. 
Burges 1998; Huang et al. 2002; Huang and Song 2012; Vapnik 1995). A brief summary is 
provided below following these publications. 
 
The inductive principle behind SVM is structural risk minimization (SRM) designed to 
minimize overfitting, a problem common to classification models developed using neural 
networks and decision trees (Foody and Arora 1997; Friedl et al. 1999; Paola and 
Schowengerdt 1995). According to Vapnik (1995), the risk of a learning machine (R) is 
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bounded by the sum of the empirical risk estimated from training samples (Remp) and a 

confidence interval (): 
 

 empRR
 

 
The strategy of SRM is to keep the empirical risk (Remp) fixed and minimize the confidence 

interval (). This is achieved by maximizing the margin between a classification boundary 
and the support vectors, i.e., training samples closest to the classification boundary. This 
optimization problem can be solved mathematically for linear classification boundaries. The 
actual boundaries between different surface types, however, are rarely linear. Kernel 
functions are used to extend this algorithm concept to nonlinear boundaries, which can 
greatly improve classification accuracy (Figure 2-11). One of the most robust kernel 
functions widely used in land cover classification is the radial basis function (RBF): 
 

2
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The SVM algorithm has been implemented in several computer packages. The πSVM 3 – a 
parallel SVM software built on the LibSVM package and Message Passing Interface (MPI) 
framework, is selected for AST production. The LibSVM 4 software package is publicly 
available. It has been widely used in land cover studies (Mountrakis et al. 2011). The 
parallel implementation greatly reduces the amount of time needed to produce the AST 
product. 
 

 
Figure 2-11. Use of linear decision boundaries to classify data having nonlinear boundaries 
can result in large misclassification errors (left most). The class boundaries can be better 
represented using the RBF kernel with progressively fine-tuned gamma values, which can 
result in minimum or no classification errors (from the 2nd to the 5th). Samples of the two 

classes are represented by empty and solid circles. Circled points are support vectors, and 
checked points are misclassification errors. Created based on Huang et al. (2002). 

                                                 
3 See http://pisvm.sourceforge.net/ for general information about the πSVM package. 
4 See https://www.csie.ntu.edu.tw/~cjlin/libsvm/ for details about the LibSVM package. 

http://pisvm.sourceforge.net/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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2.3.2.4 Post-Processing 

There are two goals for post-processing. The first is to incorporate two classes – built-up 
lands and water bodies, into the initial AST product generated by the machine learning 
algorithms. These two classes are not included in the initial classification, which is a 
common practice in previous global land cover mapping efforts (Friedl et al. 2010; Friedl et 
al. 2002; Hansen et al. 2000). Two existing products are used to define these two classes, 
including a MODIS based global urban area map developed by Schneider et al. (2010), and 
a global water mask dataset developed by Carroll et al. (2009).  
 
The second post-processing goal is to correct for some of the errors in the initial AST 
product. For example, confusions between croplands, cropland/natural vegetation mosaic, 
grasslands, and open shrublands exist in many areas. This is partly due to a lack of clear 
boundaries between some of these classes and partly because pixels of these classes are 
often highly mixed. Posterior classification probabilities and ancillary data layers are used 
to reduce some of these errors. Some of the ancillary datasets useful for post-processing 
are listed in Table 2-2. 
 

2.4.  Algorithm Output  

The primary output of the above described processing flow is the final AST map produced 
using VIIRS observations acquired within a year. Figure 2-12 shows the 2014 AST map 
reprojected using the geographic projection. 
 
To facilitate broad use of the VIIRS AST product, two variations of this product are 
produced. The first consists of the biome classes required by a leaf area index (LAI) 
algorithm (Myneni et al. 1997). The other is a 20-class map for use by the National Centers 
for Environmental Prediction (NCEP) land team in land surface models. 
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Figure 2-12. Final AST map based on 2014 VIIRS observations in the geographic 
projection. 

 
Biome Map 

The biome map includes 6 biome classes for vegetated areas and 3 classes for non-
vegetated areas: 
  

0. Water 
1. Grasses and Cereal Crops  
2. Shrubs 
3. Broadleaf Crops 
4. Savannas  
5. Broadleaf Forests  
6. Needleleaf Forests 
7. Unvegetated 
8. Urban 

 
This product is generated based on the 17-class AST map and ancillary datasets using a 
look-up-table (LUT, Figure 2-13). The following ancillary datasets are used by the LUT: 
 

- Second classification label of the SVM classification 

- The World Wildlife Fund (WWF) biome map, and 

- An agriculture type (ag_type) map 
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Figure 2-13. Look-up-table (LUT) for converting the 17-class AST product to a biome map 
required by the LAI algorithm of Myneni et al. (1997). 

 
The ag_type map is produced based on training data provided by the STEP database 
(Muchoney et al. 1999). The biome map derived using the 2014 AST product is shown in 
Figure 2-14. 
 

20-Class Map for NCEP Models 

In addition to the 17-IGBP types, NECP land surface models require that the tundra region 
be classified into three classes: wooded tundra, mixed tundra, and bare ground tundra. 
These three tundra types are derived based on the MODIS global land cover product and 
other ancillary data. The 20-class map derived using the 2014 AST product is shown in 
Figure 2-15. 
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Figure 2-14. Biome type map derived based on the 2014 AST product for use by the LAI 
algorithm of Myneni et al. (1997). 

 

 
 

Figure 2-15. The 20-class map derived based on the 2014 AST product for use by NCEP 
land surface models. 

 
 



NOAA  
  Satellite Products and Services Review Board 

Algorithm Theoretical Basis Document for VIIR Surface Type 
  Page 35 of 50 

 

 

 

2.5.  Performance Estimates 

2.5.1.  Test Data Description 

Test data for evaluating the AST product has been described in section 2.2 
 

2.5.2.  Sensor Effects 

The AST algorithm might be affected by large geometric and/or radiometric errors in VIIRS 
data. However, both the geometric correction and radiometric calibration of the VIIRS data 
are adequately accurate for the AST algorithm. Clouds, shadows, and other bad 
observations, if not flagged or filtered, tend to produce erroneous results. Most of such bad 
observations should have been removed through compositing and metrics generation 
described in sections 2.3.2.1-2.3.2.2. For extremely cloudy regions, however, some of the 
composites and metrics may still be contaminated by clouds or shadows. Although it is 
hard to estimate the number of pixels subject to such residual noises, their fractions should 
be extremely small (<< 1%).  
 

2.5.3.  Retrieval Errors 

Both the C5 and SVM algorithms can produce highly accurate results if the training 
samples provided are representative, the classes are separable, and the input data 
(including both the predictor variables, i.e., annual metrics, and the training data) are 
immune from noises. In reality, however, it is impossible to provide a training dataset that is 
error free and can adequately represent the spectral-temporal signatures of different 
surface types distributed in different regions of the globe. This is exacerbated by the fact 
that because transitions between some of the surface types are a continuum in many 
regions, clear boundaries between them may not exist. Further, the annual metrics to be 
classified by the machine learning algorithms are not error free. As discussed in section 
2.5.2, in extremely cloudy regions, some pixels may still be contaminated by cloud/shadow.  
 
It is extremely difficult, if not impossible, to quantify the magnitude of each of these error 
sources, and hence the difficulty to estimate the error budget arising from each factor. The 
accuracy assessment results reported in section 2.7 reflect the aggregated errors of all 
these factors. Overall, these errors in each of the AST products generated thus far do not 
exceed the error level specified in Table 1-1 (see detailed discussions in section 2.7).  
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2.6.  Practical Considerations 

2.6.1.  Numerical Computation Considerations 

Development of the AST is both CPU and storage intensive. It requires processing of all 
VIIRS observations in the selected bands acquired during daylight time over a full calendar 
year. The total volume of all data files required or generated by this process exceeds 100 
TB. Most of the preprocessing procedures, including gridding, mosaicking, and 
compositing, need to be performed monthly or more frequently. To reduce storage needs to 
a manageable level, the swath level raw data are removed after being gridded.  
 
Use of the machine learning algorithms to produce the AST product is both CPU and I/O 
intensive. Some level of parallel processing is needed to improve processing efficiency. 
This is achieved in two ways. One is to divide the globe into smaller tiles (e.g., the standard 
tiling system used by MODIS products) and process different tiles in parallel. The other is to 
use a parallel version of the SVM – πSVM, to produce the AST.  
 

2.6.2.  Programming and Procedural Considerations 

The AST is an offline product to be generated by the surface type team outside any 
operational VIIRS processing systems (e.g., IDPS, NDE). This is appropriate because the 
AST does not need to be generated on a daily or near real time basis, which is what the 
IDPS and NDE are designed to achieve. Many key procedures of the AST algorithm, 
including training data development, post-processing, and accuracy assessment, require 
frequent user inputs, which is difficult for an operational system to accommodate. On the 
other hand, the high processing efficiencies operational systems aim to provide are not as 
critical to these procedures as to those needed to produce some other VIIRS products.  
 
That said, the AST algorithm can leverage the processing capabilities of an operational 
processing system like the NDE. In particular, downloading the swath level data is one of 
the most time consuming parts of the current implementation of the gridding and 
mosaicking process for generating gridded global daily SR and BT mosaics from swath 
level observations. The time and storage needs incurred by this step could be completely 
eliminated if it could be implemented on an operational processing system like the NDE. 

2.6.3.  Quality Assessment and Diagnostics 

Quality assessment is achieved through both visual assessments and accuracy 
assessment. Visual assessment provides an effective method for diagnosing many issues 
that may arise throughout the AST processing flow. Missing granules, residual clouds in the 
monthly composites, and/or large initial misclassification errors are among some of the 
issues encountered in producing an AST product. They can be identified through visual 
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assessments of the daily mosaics, monthly composites, annual metrics, and the initial AST 
product generated by the machine learning algorithms. Timely identification of these issues 
is critical for addressing them and preventing errors that may be caused by them 
propagating to the final AST product. 
 
Once the final AST is produced, the final assessment of the product is achieved through 
validation and accuracy assessment, which is described in section 2.7. 

2.6.4.  Exception Handling 

This AST will be produced for all land surfaces, including inland water bodies. 

2.7.  Validation  

The AST product is validated following a rigorous design-based accuracy assessment 
procedure. The reference samples required for such an assessment have been described 
in section 2.2. These samples are used to create an error matrix and calculate accuracy 
estimates following established methods (Olofsson et al. 2014; Stehman 1999; Stehman 
and Czaplewski 1998). The accuracies of AST products derived using S-NPP data for 
some early years have been reported previously (Zhang et al. 2016, 2017). For 2019, the 
AST map was derived using data acquired by both S-NPP and NOAA-20. The product has 
an overall accuracy of 78.0±0.6%, which is comparable to those of early year products and 
the existing NASA MODIS land cover products, and exceeds the 70% requirement listed in 
Table 2-1. Details of the error matrix of this product are shown in Table 2-5.  
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Table 2-5. Error matrix of the 2019 AST product derived through accuracy assessment. The surface types are numbered 
the same way as shown in Table 1-2. The values in the columns for the 17 types and the Total column are areal 

proportion (e.g. 1.93 is 1.93% of the land area of the globe). U Acc. and P Acc. are user’s and producer’s accuracies (%), 
respectively. 

 

 

  

  

Map 
Reference 

Total U Acc. P Acc. 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

1 1.93 0 0.07 0.03 0.25 0.01 0.01 0.23 0.03 0.02 0 0 0 0.01 0 0 0.01 2.62 73.7±2.9 75.4±3.4 

2 0 8.56 0 0.08 0.12 0 0 0.41 0.08 0.02 0.02 0.05 0 0.08 0 0 0 9.4 91.0±1.2 93.9±1.0 

3 0.06 0 0.96 0 0.15 0 0.03 0.11 0 0 0.03 0 0 0 0 0 0 1.35 71.2±4.2 63.3±4.9 

4 0 0 0.01 0.84 0.05 0 0 0.08 0.02 0 0 0 0 0.01 0 0 0 1.01 83.1±2.9 39.5±3.4 

5 0.18 0.13 0.3 0.68 3.48 0.03 0 0.68 0.12 0.02 0.02 0 0 0.25 0 0 0.02 5.88 59.1±2.6 76.2±2.6 

6 0 0 0 0 0 0.04 0 0 0 0 0 0 0 0 0 0 0 0.05 76.1±6.4 2.4±0.5 

7 0.14 0 0.07 0.02 0.14 0.6 11.85 0.41 0.31 1.46 0.24 0.57 0 0.12 0 0.6 0.02 16.55 71.6±1.7 84.9±1.7 

8 0.19 0.14 0.06 0.24 0.14 0.06 0.24 5.16 0.58 0.09 0.07 0.06 0.01 0.31 0 0 0.02 7.37 70.0±1.8 58.1±2.1 

9 0 0.17 0.02 0.07 0.05 0.5 0.27 1.02 4.65 0.2 0.02 0.32 0 0.42 0 0 0 7.75 60.0±2.8 68.8±2.6 

10 0.03 0 0.01 0.04 0.05 0.24 0.75 0.25 0.3 6.34 0 0.61 0.01 0.18 0 0.21 0.01 9.03 70.2±1.7 70.2±2.1 

11 0.03 0 0 0 0.04 0 0.06 0.04 0.04 0.01 0.54 0 0 0 0 0 0 0.77 70.4±6.3 57.0±7.2 

12 0.01 0.01 0 0.02 0.04 0.03 0.1 0.04 0.22 0.43 0.01 6.91 0.06 0.68 0 0 0.02 8.56 80.6±1.3 76.4±1.8 

13 0 0 0 0 0 0 0.01 0.03 0 0.01 0 0.07 0.52 0.04 0 0 0 0.69 75.0±3.6 83.6±4.5 

14 0 0.1 0.02 0.09 0.05 0.01 0.06 0.42 0.4 0.17 0 0.36 0.02 2.76 0 0.01 0 4.45 62.1±2.1 55.7±2.7 

15 0 0 0 0 0 0 0.17 0 0 0 0 0 0 0 10.21 0 0 10.38 98.3±1.7 100.0±0.0 

16 0 0 0 0 0 0 0.4 0 0 0.27 0 0.09 0 0.09 0 12.15 0 13 93.5±1.5 93.7±1.0 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.13 1.13 100.0±0.0 91.5±3.1 

Total 2.56 9.12 1.52 2.11 4.56 1.51 13.96 8.88 6.76 9.04 0.95 9.04 0.62 4.96 10.21 12.97 1.23    
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3.  ASSUMPTIONS AND LIMITATIONS  

The VIIRS AST algorithm is designed based on a number of assumptions, including: 
 

- The Earth’s surface can be divided into discrete grid cells where each grid cell 
contains one and only one of the 17 IGBP surface types; 

- The spectral-temporal information collected by VIIRS provides reasonable 
separability among the surface types across the globe;  

- The surface type of each grid cell does not change within a calendar year. 
 
These assumptions are not 100% valid. In fact, most grid cells at the 1-km resolution are 
mixtures of multiple land cover types. Some surface types are not separable using spectral-
temporal information in certain regions. For example, wetlands are highly mixed and are 
often confused with other surface types. Grasslands and cereal/crops may not be 
separable in certain regions. Rice paddies as croplands many be confused with some 
wetlands. Table 2-5 provide quantitative measures of the confusions among the 17 IGBP 
classes in the 2019 AST product. 
 
Further, many grid cells have surface type change within a year, which can be caused by 
events driven by both natural processes and human activities. For example, large portions 
of the Earth’s surface have seasonal changes in snow cover (Figure 3-1). Short term 
changes in surface inundation occur in many areas during flooding events. More 
permanent changes in forest cover can result from wildfires, deforestation, and 
urbanization. The current AST product is not designed to capture such changes. 
 

3.1.  Performance Assumptions 

Performance assessment of the VIIRS AST algorithm derived in section 2.7 assumes that 
all reference samples described in section 2.2 have been labeled correctly. This is not 
entirely true. Determining the surface type of a sample located in a homogeneous area may 
be relatively straightforward. For samples located in heterogeneous areas or near or along 
the edge or transition areas between different surface types, however, it can be difficult to 
determine their surface types reliably. Even human experts may not be able to label such 
samples correctly and consistently. It is not uncommon that different analysts label such 
samples differently (Feng et al. 2016; Montesano et al. 2009).  
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Figure 3-1. Snow flags in the Surface Type EDR generated by the IDPS system show that 

season snow cover changes between spring, summer, fall, and winter occur over large 
portions of the Earth’s surface. 

 

3.2.  Potential Improvements 

Given the limitations of the current VIIRS AST algorithm discussed above, the VIIRS 
surface type can be improved in many ways. Priorities should be given to improvements 
that can account for changes important for weather and climate studies. It has been 
demonstrated in many studies that surface type changes can result in changes in key 
climate variables (Li et al. 2017; Mahmood et al. 2014). For example, deforestation can 
cause changes in local surface temperature and precipitation (Winckler et al. 2017), while 
changes in surface inundation often result in changes in evapotranspiration (Zhao and Liu 
2016). Agricultural expansion may result in warming over the Amazon but may produce 
cooling effects in the mid-latitudes (Feddema et al. 2005). 
 
Capabilities that can account for some surface type changes already exist or are being 
developed. Use of MODIS data to detect surface type change has been explored in many 
studies (e.g. Guindon et al. 2014; Jin and Sader 2005; Mildrexler et al. 2009). Members of 
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the VIIRS surface type team implemented and evaluated the change vector analysis (CVA) 
and several other methods for detecting surface type changes using MODIS data (Zhan et 
al. 2000; Zhan et al. 2002). They have extensive experiences in developing fully automated 
methods for mapping forest change using Landsat data (Huang et al. 2010; Huang et al. 
2008) and generating forest change products at national (Goward et al. 2015; Huang et al. 
2009; Huang et al. 2007; Zhao et al. 2018), continental (Masek et al. 2008), and global 
scales (Feng et al. 2016; Kim et al. 2014). Further, the VIIRS Snow EDR can provide 
information on daily changes in snow cover. Algorithms developed through prove-ground 
studies on surface inundation and flood mapping using VIIRS data can be used to track 
short term changes in surface inundation. The VIIRS Active Fire product can be used to 
track fire occurrence, although additional research is needed to determine whether surface 
type changes occurred following each detected fire event. The feasibility to map surface 
type changes due to flooding and fire has been demonstrated in prototype studies 
conducted by the surface type team (Figure 3-2). 
 
The effectiveness of the VIIRS data for detecting sub-km scale changes may be 
constrained by the 1-km grid cell size of the M bands used to generate the AST product. 
Detection of such changes requires that surface type be quantified as continuous fields 
within each grid cell. Algorithms for generating global continuous fields land cover products 
have been developed for MODIS and AVHRR (DeFries et al. 2000; Hansen et al. 2003). It 
has been demonstrated that such continuous fields products can be used to quantify 
subpixel forest loss using time series analysis methods (Song et al. 2014b). Use of the 375 
m imagery bands should also improve the detectability of sub-km surface type changes. 
 
Additional research is needed to improve the maturity of existing algorithms or develop 
more efficient algorithms suitable for routine monitoring of major surface type changes 
using VIIRS data, including data from both NOAA-20 and S-NPP. It would be relatively 
straightforward to combine a derived change product, once generated, with the AST 
product to create a daily surface type product suite. Such a product suite would be similar 
to the original surface type EDR in design, but should capture more change processes and 
therefore provide a more realistic representation of global surface cover conditions on a 
daily basis than the AST alone. Since models often require data to have geographic 
coordinates or a commonly used projection, this product suite should be produced in a 
gridded space that has needed georeferenced information. A future system that could be 
used to produce such a product suite is shown in Figure 3-3. 
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Figure 3-2. Selected prototype studies demonstrating the feasibility to map surface type 
changes caused by flooding (top) and fire (bottom) using VIIRS observations.  
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Figure 3-3. A conceptual framework of a future system that could be used to generate a 
daily VIIRS surface type product suite. Components in the dashed box can be developed in 

the future when needed resources become available.  
 
In addition, both the training and validation points need to be screened on an annual basis 
to identify points whose surface type labels are no longer valid due to land cover change 
and update those labels properly. Having both S-NPP and NOAA-20 in orbit provides 
opportunities to reduce clouds/shadow and other data quality problems (Figure 2-2). 
Further improvements to the compositing and annual metrics generation algorithms may be 
needed to leverage the synergy of the two satellites for improved surface type monitoring. 
 
4.  REFERENCES 

Bartholome, E., & Belward, A.S. (2005). GLC2000: a new approach to global land cover 
mapping from Earth observation data. International Journal of Remote Sensing, 26, 
1959-1977. 

Bauer, E., & Kohavi, R. (1998). An empirical comparison of voting classification algorithms: 
bagging, boosting, and variants. Machine Learning, 5, 1-38. 

Belward, A., & Loveland, T. (1996). The DIS 1 km land cover data set. Global Change 
News Letter, 27, 7-9. 

Bian, J., Li, A., Huang, C., Zhang, R., & Zhan, X. (2018). A self-adaptive approach for 
producing clear-sky composites from VIIRS surface reflectance datasets. ISPRS 
Journal of Photogrammetry and Remote Sensing, 144, 189-201. 

Bright, R.M. (2015). Metrics for Biogeophysical Climate Forcings from Land Use and Land 
Cover Changes and Their Inclusion in Life Cycle Assessment: A Critical Review. 
Environmental Science & Technology, 49, 3291-3303. 

Burges, C.J.C. (1998). A tutorial on support vector machines for pattern recognition. Data 
Mining and Knowledge Discovery, 2, 121-167. 



NOAA  
  Satellite Products and Services Review Board 

Algorithm Theoretical Basis Document for VIIR Surface Type 
  Page 44 of 50 

 

 

 

Campagnolo, M.L., Sun, Q., Liu, Y., Schaaf, C., Wang, Z., & Román, M.O. (2016). 
Estimating the effective spatial resolution of the operational BRDF, albedo, and nadir 
reflectance products from MODIS and VIIRS. Remote Sensing of Environment, 175, 
52-64. 

Carroll, M.L., Townshend, J.R., DiMiceli, C.M., Noojipady, P., & Sohlberg, R.A. (2009). A 
new global raster water mask at 250 m resolution. International Journal of Digital 
Earth, 2, 291-308. 

Chan, J.C.-W., Huang, C., & DeFries, R.S. (2001). Enhanced algorithm performance for 
land cover classification using bagging and boosting. IEEE Transactions on 
Geoscience and Remote Sensing, 39, 693-695. 

Chan, J.C.-W., & Paelinckx, D. (2008). Evaluation of Random Forest and Adaboost tree-
based ensemble classification and spectral band selection for ecotope mapping using 
airborne hyperspectral imagery. Remote Sensing of Environment, 112, 2999-3011. 

Chen, F., & Dudhia, J. (2001). Coupling an advanced land surface-hydrology model with 
the Penn State-NCAR MM5 modeling system.  Part I: Model Implementation and 
Sensitivity. Monthly Weather Review, 129, 569 -585. 

Chen, J., Chen, J., Liao, A., Cao, X., Chen, L., Chen, X., He, C., Han, G., Peng, S., Lu, M., 
Zhang, W., Tong, X., & Mills, J. (2015). Global land cover mapping at 30 m resolution: 
A POK-based operational approach. ISPRS Journal of Photogrammetry and Remote 
Sensing, 103, 7-27. 

Chuvieco, E., Ventura, G., MartÃn, M.P., & GÃ³mez, I. (2005a). Assessment of 
multitemporal compositing techniques of MODIS and AVHRR images for burned land 
mapping. Remote Sensing of Environment, 94, 450-462. 

Chuvieco, E., Ventura, G., Martin, M.P., & Gomez, I. (2005b). Assessment of multitemporal 
compositing techniques of MODIS and AVHRR images for burned land mapping. 
Remote Sensing of Environment, 94, 450-462. 

DeFries, R., Hansen, M., Townshend, J.R.G., Janetos, A.C., & Loveland, T.R. (2000). 
Continuous Fields 1 Km Tree Cover. In: College Park, Maryland: The Global Land 
Cover Facility. 

DeFries, R.S., & Townshend, J.R.G. (1994). NDVI-derived land cover classifications at a 
global scale. International Journal of Remote Sensing, 15, 3567-3586. 

DeFries, R.S., Townshend, J.R.G., & Hansen, M.C. (1999). Continuous fields of vegetation 
characteristics at the global scale at 1-km resolution. Journal of Geophysical 
Research-Atmospheres, 104, 16911-16923. 

Dickinson, R.E. (1995). Land processes in climate models. Remote Sensing of 
Environment, 51, 27-38. 

Feddema, J.J., Oleson, K.W., Bonan, G.B., Mearns, L.O., Buja, L.E., Meehl, G.A., & 
Washington, W.M. (2005). The Importance of Land-Cover Change in Simulating 
Future Climates. Science, 310, 1674-1678. 

Feng, M., Sexton, J.O., Huang, C., Anand, A., Channan, S., Song, X.-P., Song, D.-X., Kim, 
D.-H., Noojipady, P., & Townshend, J.R. (2016). Earth science data records of global 



NOAA  
  Satellite Products and Services Review Board 

Algorithm Theoretical Basis Document for VIIR Surface Type 
  Page 45 of 50 

 

 

 

forest cover and change: Assessment of accuracy in 1990, 2000, and 2005 epochs. 
Remote Sensing of Environment, 184, 73-85. 

Foody, G.M., & Arora, M.K. (1997). An evaluation of some factors affecting the accuracy of 
classification by an artificial neural network. International Journal of Remote Sensing, 
18, 799-810. 

Franklin, S.E., & Wulder, M.A. (2002). Remote sensing methods in medium spatial 
resolution satellite data land cover classification of large areas. Progress in Physical 
Geography: Earth and Environment, 26, 173-205. 

Frantz, D., Röder, A., Stellmes, M., & Hill, J. (2017). Phenology-adaptive pixel-based 
compositing using optical earth observation imagery. Remote Sensing of Environment, 
190, 331-347. 

Friedl, M.A., Brodley, C.E., & Strahler, A.H. (1999). Maximizing land cover classification 
accuracies produced by decision trees at continental to global scales. IEEE 
Transactions on Geoscience and Remote Sensing, 37, 969-977. 

Friedl, M.A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., & 
Huang, X. (2010). MODIS Collection 5 global land cover: Algorithm refinements and 
characterization of new datasets. Remote Sensing of Environment, 114, 168-182. 

Friedl, M.A., Zhang, X.Y., Muchoney, D., Strahler, A.H., Woodcock, C.E., Gopal, S., 
Schneider, A., Cooper, A., Baccini, A., Gao, F., Schaaf, C., McIver, D.K., & Hodges, 
J.C.F. (2002). Global land cover mapping from MODIS: Algorithms and early results. 
Remote Sensing of Environment, 83, 287-302. 

Gong, P., Wang, J., Yu, L., Zhao, Y., Zhao, Y., Liang, L., Niu, Z., Huang, X., Fu, H., Liu, S., 
Li, C., Li, X., Fu, W., Liu, C., Xu, Y., Wang, X., Cheng, Q., Hu, L., Yao, W., Zhang, H., 
Zhu, P., Zhao, Z., Zhang, H., Zheng, Y., Ji, L., Zhang, Y., Chen, H., Yan, A., Guo, J., 
Yu, L., Wang, L., Liu, X., Shi, T., Zhu, M., Chen, Y., Yang, G., Tang, P., Xu, B., Giri, 
C., Clinton, N., Zhu, Z., Chen, J., & Chen, J. (2013). Finer resolution observation and 
monitoring of global land cover: first mapping results with Landsat TM and ETM+ data. 
International Journal of Remote Sensing, 34, 2607-2654. 

Goward, S.N., Huang, C., Zhao, F., Schleeweis, K., Rishmawi, K., Lindsey, M., Dungan, 
J.L., & Michaelis, A. (2015). NACP NAFD Project: Forest Disturbance History from 
Landsat, 1986-2010. In U.o.M.-N. NEX (Ed.). http://daac.ornl.gov/cgi-
bin/dsviewer.pl?ds_id=1290: ORNL DAAC, Oak Ridge, Tennessee, USA. 

Griffiths, P., van der Linden, S., Kuemmerle, T., & Hostert, P. (2013). Pixel-Based Landsat 
Compositing Algorithm for Large Area Land Cover Mapping. Ieee Journal of Selected 
Topics in Applied Earth Observations and Remote Sensing, 6, 2088-2101. 

Guindon, L., Bernier, P.Y., Beaudoin, A., Pouliot, D., Villemaire, P., Hall, R.J., Latifovic, R., 
& St-Amant, R. (2014). Annual mapping of large forest disturbances across Canada’s 
forests using 250 m MODIS imagery from 2000 to 2011. Canadian Journal of Forest 
Research, 44, 1545-1554. 

Hansen, M., DeFries, R.S., Townshend, J.R.G., & Sohlberg, R. (2000). Global land cover 
classification at 1 km spatial resolution using a classification tree approach. 
International Journal of Remote Sensing, 21, 1331-1364. 

http://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1290
http://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1290


NOAA  
  Satellite Products and Services Review Board 

Algorithm Theoretical Basis Document for VIIR Surface Type 
  Page 46 of 50 

 

 

 

Hansen, M.C., DeFries, R.S., Townshend, J.R.G., Carroll, M., Dimiceli, C., & Sohlberg, 
R.A. (2003). Global Percent Tree Cover at a Spatial Resolution of 500 Meters: First 
Results of the MODIS Vegetation Continuous Fields Algorithm. Earth Interactions, 7, 
1-15. 

Hansen, M.C., & Loveland, T.R. (2012). A review of large area monitoring of land cover 
change using Landsat data. Remote Sensing of Environment, 122, 66-74. 

Hansen, M.C., Sohlberg, R., Dimiceli, C., Carroll, M., Defries, R.S., & Townshend, J.R.G. 
(2002). Towards an operational MODIS continuous field of percent tree cover 
algorithm: Examples using AVHRR and MODIS data. Remote Sensing of 
Environment, 83, 303-319. 

Hansen, M.C., Townshend, J.R.G., Defries, R.S., & Carroll, M. (2005). Estimation of tree 
cover using MODIS data at global, continental and regional/local scales. International 
Journal of Remote Sensing, 26, 4359-4380. 

Hasager, C.B., Nielsen, N.W., Jensen, N.O., Boegh, E., Christensen, J.H., Dellwik, E., & 
Soegaard, H. (2003). Effective Roughness Calculated from Satellite-Derived Land 
Cover Maps and Hedge-Information used in a Weather Forecasting Model. Boundary-
Layer Meteorology, 109, 227-254. 

Holben, B.N. (1986). Characteristics of maximum-value composite images from temporal 
AVHRR data. International Journal of Remote Sensing, 7, 1417-1434. 

Homer, C., Huang, C., Yang, L., Wylie, B., & Coan, M. (2004). Development of a 2001 
national land cover database for the United States. Photogrammetric Engineering & 
Remote Sensing, 70, 829-840. 

Huang, C., Davis, L.S., & Townshend, J.R.G. (2002). An assessment of support vector 
machines for land cover classification. International Journal of Remote Sensing, 23, 
725-749. 

Huang, C., Goward, S.N., Masek, J.G., Thomas, N., Zhu, Z., & Vogelmann, J.E. (2010). An 
automated approach for reconstructing recent forest disturbance history using dense 
Landsat time series stacks. Remote Sensing of Environment, 114, 183-198. 

Huang, C., Homer, C., & Yang, L. (2003). Regional forest land cover characterization using 
medium spatial resolution satellite data. In M. Wulder, & S. Franklin (Eds.), Methods 
and Applications for Remote Sensing of Forests: Concepts and Case Studies (pp. 
389-410). Boston: Kluwer Academic Publishers. 

Huang, C., Kim, S., Altstatt, A., Song, K., Townshend, J.R.G., Davis, P., Rodas, O., 
Yanosky, A., Clay, R., Tucker, C.J., & Musinsky, J. (2009). Assessment of Paraguay’s 
forest cover change using Landsat observations. Global and Planetary Change, 67, 1-
12. 

Huang, C., Kim, S., Altstatt, A., Townshend, J.R.G., Davis, P., Song, K., Tucker, C.J., 
Rodas, O., Yanosky, A., Clay, R., & Musinsky, J. (2007). Rapid loss of Paraguay’s 
Atlantic forest and the status of protected areas – a Landsat assessment. Remote 
Sensing of Environment, 106, 460-466. 



NOAA  
  Satellite Products and Services Review Board 

Algorithm Theoretical Basis Document for VIIR Surface Type 
  Page 47 of 50 

 

 

 

Huang, C., & Song, K. (2012). Forest Cover Change Detection Using Support Vector 
Machines. In C.P. Giri (Ed.), Remote Sensing of Land Use and Land Cover: Principles 
and Applications (pp. 191-206). London: Taylor & Francis. 

Huang, C., Song, K., Kim, S., Townshend, J.R.G., Davis, P., Masek, J., & Goward, S.N. 
(2008). Use of a dark object concept and support vector machines to automate forest 
cover change analysis. Remote Sensing of Environment, 112, 970-985. 

Jin, S., & Sader, S.A. (2005). MODIS time-series imagery for forest disturbance detection 
and quantification of patch size effects. Remote Sensing of Environment, 99, 462-470. 

Kim, D.-H., Sexton, J.O., Noojipady, P., Huang, C., Anand, A., Channan, S., Feng, M., & 
Townshend, J.R. (2014). Global, Landsat-based forest-cover change from 1990 to 
2000. Remote Sensing of Environment, 155, 178-193. 

Li, F., Lawrence, D.M., & Bond-Lamberty, B. (2017). Impact of fire on global land surface 
air temperature and energy budget for the 20th century due to changes within 
ecosystems. Environmental Research Letters, 12, 044014. 

Loveland, T.R., Reed, B.C., Brown, J.F., Ohlen, D.O., Zhu, Z., Yang, L., & Merchant, J.W. 
(2000). Development of a global land cover characteristics database and IGBP 
DISCover from 1km AVHRR data. International Journal of Remote Sensing, 21, 1303-
1330. 

Luo, Y., Trishchenko, A.P., & Khlopenkov, K.V. (2008). Developing clear-sky, cloud and 
cloud shadow mask for producing clear-sky composites at 250-meter spatial resolution 
for the seven MODIS land bands over Canada and North America. Remote Sensing of 
Environment, 112, 4167-4185. 

Luyssaert, S., Jammet, M., Stoy, P.C., Estel, S., Pongratz, J., Ceschia, E., Churkina, G., 
Don, A., Erb, K., Ferlicoq, M., Gielen, B., Grünwald, T., Houghton, R.A., Klumpp, K., 
Knohl, A., Kolb, T., Kuemmerle, T., Laurila, T., Lohila, A., Loustau, D., McGrath, M.J., 
Meyfroidt, P., Moors, E.J., Naudts, K., Novick, K., Otto, J., Pilegaard, K., Pio, C.A., 
Rambal, S., Rebmann, C., Ryder, J., Suyker, A.E., Varlagin, A., Wattenbach, M., & 
Dolman, A.J. (2014). Land management and land-cover change have impacts of 
similar magnitude on surface temperature. Nature Climate Change, 4, 389. 

Mahmood, R., Pielke, R.A., Hubbard, K.G., Niyogi, D., Dirmeyer, P.A., McAlpine, C., 
Carleton, A.M., Hale, R., Gameda, S., Beltrán-Przekurat, A., Baker, B., McNider, R., 
Legates, D.R., Shepherd, M., Du, J., Blanken, P.D., Frauenfeld, O.W., Nair, U.S., & 
Fall, S. (2014). Land cover changes and their biogeophysical effects on climate. 
International Journal of Climatology, 34, 929-953. 

Mantyka-Pringle, C.S., Martin, T.G., Moffatt, D.B., Udy, J., Olley, J., Saxton, N., Sheldon, 
F., Bunn, S.E., & Rhodes, J.R. (2016). Prioritizing management actions for the 
conservation of freshwater biodiversity under changing climate and land-cover. 
Biological Conservation, 197, 80-89. 

Masek, J.G., Huang, C., Wolfe, R.E., Cohen, W., Hall, F., Kutler, J., & Nelson, P. (2008). 
North American forest disturbance mapped from a decadal Landsat record. Remote 
Sensing of Environment, 112, 2914-2926. 



NOAA  
  Satellite Products and Services Review Board 

Algorithm Theoretical Basis Document for VIIR Surface Type 
  Page 48 of 50 

 

 

 

Mildrexler, D.J., Zhao, M., & Running, S.W. (2009). Testing a MODIS Global Disturbance 
Index across North America. Remote Sensing of Environment, 113, 2103-2117. 

Montesano, P.M., Nelson, R., Sun, G., Margolis, H., Kerber, A., & Ranson, K.J. (2009). 
MODIS tree cover validation for the circumpolar taiga–tundra transition zone. Remote 
Sensing of Environment, 113, 2130-2141. 

Mountrakis, G., Im, J., & Ogole, C. (2011). Support vector machines in remote sensing: A 
review. ISPRS Journal of Photogrammetry and Remote Sensing, 66, 247-259. 

Muchoney, D., Strahler, A., Hodges, J., & LoCastro, J. (1999). The IGBP DISCover 
confidence sites and the system for terrestrial ecosystem parameterization. Tools for 
validating global land-cover data. Photogrammetric Engineering and Remote Sensing, 
65, 1061-1067. 

Myneni, R.B., Nemani, R.R., & Running, S.W. (1997). Estimation of global leaf area index 
and absorbed par using radiative transfer models. IEEE Geoscience and Remote 
Sensing, 35, 1380-1393. 

Olofsson, P., Foody, G.M., Herold, M., Stehman, S.V., Woodcock, C.E., & Wulder, M.A. 
(2014). Good practices for estimating area and assessing accuracy of land change. 
Remote Sensing of Environment, 148, 42-57. 

Paola, J.D., & Schowengerdt, R.A. (1995). A review and analysis of backpropagation 
neural networks for classification of remotely sensed multi-spectral imagery. 
International Journal of Remote Sensing, 16, 3033-3058. 

Quinlan, J.R. (1993). C4.5 programs for machine learning. San Mateo, California: Morgan 
Kaufmann Publishers. 

Roy, D.P., Ju, J.C., Kline, K., Scaramuzza, P.L., Kovalskyy, V., Hansen, M., Loveland, 
T.R., Vermote, E., & Zhang, C.S. (2010). Web-enabled Landsat Data (WELD): 
Landsat ETM plus composited mosaics of the conterminous United States. Remote 
Sensing of Environment, 114, 35-49. 

Salazar, A., Baldi, G., Hirota, M., Syktus, J., & McAlpine, C. (2015). Land use and land 
cover change impacts on the regional climate of non-Amazonian South America: A 
review. Global and Planetary Change, 128, 103-119. 

Schneider, A., Friedl, M.A., & Potere, D. (2010). Mapping global urban areas using MODIS 
500-m data: New methods and datasets based on 'urban ecoregions'. Remote 
Sensing of Environment, 114, 1733-1746. 

Schueler, C.F., Lee, T.F., & Miller, S.D. (2013). VIIRS constant spatial-resolution 
advantages. International Journal of Remote Sensing, 34, 5761-5777. 

Sellers, P.J., Meeson, B.W., Hall, F.G., Asrar, G., Murphy, R.E., Schiffer, R.A., Bretherton, 
F.P., & et al. (1995). Remote sensing of the land surface for studies of global change: 
models - algorithms - experiments. Remote Sensing of Environment, 51, 3-26. 

Sellers, P.J., Randall, D.A., Collatz, G.J., Berry, J.A., Field, C.B., Dazlich, D.A., Zhang, C., 
Collelo, G.D., & Bounoua, L. (1996). A Revised Land Surface Parameterization (SiB2) 
for Atmospheric GCMS. Part I: Model Formulation. Journal of Climate, 9, 676-705. 

Senapathi, D., Carvalheiro, L.G., Biesmeijer, J.C., Dodson, C.-A., Evans, R.L., McKerchar, 
M., Morton, R.D., Moss, E.D., Roberts, S.P.M., Kunin, W.E., & Potts, S.G. (2015). The 



NOAA  
  Satellite Products and Services Review Board 

Algorithm Theoretical Basis Document for VIIR Surface Type 
  Page 49 of 50 

 

 

 

impact of over 80 years of land cover changes on bee and wasp pollinator 
communities in England. Proceedings of the Royal Society B: Biological Sciences, 
282. 

Sexton, J.O., Noojipady, P., Song, X.-P., Feng, M., Song, D.-X., Kim, D.-H., Anand, A., 
Huang, C., Channan, S., & Pimm, S.L. (2016). Conservation policy and the 
measurement of forests. Nature Climate Change, 6, 192-196. 

Song, X.-P., Huang, C., Feng, M., Sexton, J.O., Channan, S., & Townshend, J.R. (2014a). 
Integrating global land cover products for improved forest cover characterization: an 
application in North America. International Journal of Digital Earth, 7, 709-724. 

Song, X.-P., Huang, C., Sexton, J., Channan, S., & Townshend, J. (2014b). Annual 
Detection of Forest Cover Loss Using Time Series Satellite Measurements of Percent 
Tree Cover. Remote Sensing, 6, 8878-8903. 

Song, X.-P., Huang, C., & Townshend, J.R. (2017). Improving global land cover 
characterization through data fusion. Geo-spatial Information Science, 1-10. 

Stehman, S.V. (1999). Basic probability sampling designs for thematic map accuracy 
assessment. International Journal of Remote Sensing, 20, 2423-2441. 

Stehman, S.V., & Czaplewski, R.L. (1998). Design and analysis for thematic map accuracy 
assessment: fundamental principles. Remote Sensing of Environment, 64, 331-344. 

Stow, D.A., Tinney, L.R., & Estes, J.E. (1980). Deriving land use/land cover change 
statistics from Landsat: a study of prime agricultural land. In, Proceedings of the 14th 
International Symposium on Remote Sensing of Environment (pp. 1227-1237). Ann 
Arbor. 

Townshend, J.R.G. (1992). Land cover. International Journal of Remote Sensing, 13, 1319-
1328. 

Townshend, J.R.G., Justice, C., Li, W., Gurney, C., & McManus, J. (1991). Global land 
cover classification by remote sensing: present capabilities and future possibilities. 
Remote Sensing of Environment, 35, 243-255. 

Townshend, J.R.G., Justice, C.O., Skole, D., Malingreau, J.-P., Teillet, J.C.P., Sadowski, 
F., & Ruttenberg, S. (1994). The 1 km resolution global data set: needs of the 
International Geosphere Biosphere Programme. International Journal of Remote 
Sensing, 14, 3417-3441. 

Vapnik, V.N. (1995). The nature of statistical learning theory. New York: Springer. 
Venter, O., Sanderson, E.W., Magrach, A., Allan, J.R., Beher, J., Jones, K.R., Possingham, 

H.P., Laurance, W.F., Wood, P., Fekete, B.M., Levy, M.A., & Watson, J.E.M. (2016). 
Sixteen years of change in the global terrestrial human footprint and implications for 
biodiversity conservation. Nature Communications, 7, 12558. 

Wilson, M.F., & Henderson-Sellers, A. (1985). A global archive of land cover and soils data 
for use in general circulation climate models. Journal of Climatology, 5, 119-143. 

Winckler, J., Reick, C.H., & Pongratz, J. (2017). Robust Identification of Local 
Biogeophysical Effects of Land-Cover Change in a Global Climate Model. Journal of 
Climate, 30, 1159-1176. 



NOAA  
  Satellite Products and Services Review Board 

Algorithm Theoretical Basis Document for VIIR Surface Type 
  Page 50 of 50 

 

 

 

Wolfe, R.E., Roy, D.P., & Vermote, E. (1998). MODIS land data storage, gridding, and 
compositing methodology: Level 2 grid. Geoscience and Remote Sensing, IEEE 
Transactions on, 36, 1324-1338. 

Wood, E.F. (1991). Global scale hydrology: advances in land surface modeling. In, 
Reviews of Geophysics (pp. 193-201). 

Xue, Y., Zeng, F.J., Mitchell, K., Janjic, Z., & Rogers, E. (2001). The impact of land surface 
processes on the simulation of the U.S. hydrological cycle: A case study of 1993 US 
flood using the Eta/SSiB regional model. Monthly Weather Review, 129, 2833-2860. 

Zhan, X., DeFries, R., Townshend, J.R.G., Dimiceli, C., Hansen, M., Huang, C., & 
Sohlberg, R. (2000). The 250m global land cover change product from the Moderate 
Resolution Imaging Spectroradiometer of NASA’s Earth Observing System. 
International Journal of Remote Sensing, 21, 1433-1460. 

Zhan, X., Dimiceli, C., Carroll, M.L., Eastman, J.C., Hansen, M., DeFries, R., Townshend, 
J.R.G., & Sohlberg, R. (2002). Detection of land cover changes using MODIS 250 m 
data. Remote Sensing of Environment, 83, 336-350. 

Zhang, R., Huang, C., Zhan, X., Dai, Q., & Song, K. (2016). Development and validation of 
the global surface type data product from S-NPP VIIRS. Remote Sensing Letters, 7, 
51-60. 

Zhang, R., Huang, C., Zhan, X., Jin, H., & Song, X.-P. (2017). Development of S-NPP 
VIIRS global surface type classification map using support vector machines. 
International Journal of Digital Earth, 11, 212-232. 

Zhao, F., Huang, C., Goward, S.N., Schleeweis, K., Rishmawi, K., Lindsey, M.A., Denning, 
E., Keddell, L., Cohen, W.B., Yang, Z., Dungan, J.L., & Michaelis, A. (2018). 
Development of Landsat-based annual US forest disturbance history maps (1986–
2010) in support of the North American Carbon Program (NACP). Remote Sensing of 
Environment, 209, 312-326. 

Zhao, X., & Liu, Y. (2016). Evapotranspiration Partitioning and Response to Abnormally 
Low Water Levels in a Floodplain Wetland in China. Advances in Meteorology, 2016, 
11. 

Zhou, G., Wei, X., Chen, X., Zhou, P., Liu, X., Xiao, Y., Sun, G., Scott, D.F., Zhou, S., Han, 
L., & Su, Y. (2015). Global pattern for the effect of climate and land cover on water 
yield. Nature Communications, 6, 5918. 

 
 

END OF DOCUMENT 
 
 


